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Beach-face evolution in the swash zone
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We investigate swash on an erodible beach using the one-dimensional shallow-water
equations fully coupled to a bed-evolution (Exner) equation. In particular, the dam-
break/bore-collapse initial condition of Shen & Meyer (J. Fluid Mech., vol. 16, 1963,
pp. 113–125) and Peregrine & Williams (J. Fluid Mech., vol. 440, 2001, pp. 391–399)
is investigated using a numerical model based on the method of characteristics. A
sediment-transport formula (cubic in velocity u: Au3) is used here; this belongs to a
family of sediment-transport formulae for which Pritchard & Hogg (Coastal Engng,
vol. 52, 2005, pp. 1–23) showed that net sediment transport under the Shen & Meyer
(1963) bore collapse is offshore throughout the swash zone when a non-erodible bed
is considered. It is found that full coupling with the beach, although still resulting in
the net offshore transport of sediment throughout the swash zone, leads to a large
reduction in the net offshore transport of sediment from the beach face. This is
particularly true for the upper third of the swash zone. Moreover, in contradistinction
to swash flows over non-erodible beds, flows over erodible beaches are unique to the
bed mobility and porosity under consideration; this has very important implications
for run-up predictions. The conclusion is that it is essential to consider full coupling of
water and bed motions (i.e. full morphodynamics) in order to understand and predict
sediment transport in the swash, regardless of other physical effects (e.g. turbulence,
infiltration, pre-suspended sediment, etc.).
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1. Introduction
The swash zone is the flow region that is successively covered and uncovered by

the run-up and backwash of water as waves impinge on a beach. This zone is, in
some ways, the most dynamic region of the nearshore; here, flow velocities are high
(>2 m s−1) and water depths close to the leading edge or shoreline are very small. Due
to these high flow velocities, the swash zone is characterized by a rapid morphological
change (Masselink & Puleo 2006). Water motion in the swash zone of steeper beaches
is typically driven by the turbulent bores that result from waves breaking near or at
the shore. There are also instances when waves do not break but instead surge up
and down the beach (see Carrier & Greenspan 1958). Principal variables affecting
wave breaking are wave period, wave height and beach slope. These variables can be
combined to give the (dimensionless) surf similarity parameter, which describes if and
how waves break (see, e.g., Mei 1990). However, on most beaches, waves do break
and it is for this reason that hereafter this paper focuses solely on bore-driven swash.
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Present theoretical understanding of bore-driven swash is primarily down to the
work of Whitham, Meyer, Peregrine and co-workers (Whitham 1958; Keller, Levine &
Whitham 1960; Ho & Meyer 1962; Shen & Meyer 1963; Hibberd & Peregrine 1979;
Barker & Whitham 1980; Packwood & Peregrine 1980). Whitham (1958) was the first
to show that, within the framework of the shallow-water theory, bore height must
tend to zero as the original shoreline position is approached while the bore velocity
tends to some limiting value Û b. Despite the fact that, in reality, this process occurs
over finite time and length scales, several investigators (e.g. Freeman & Le Méhauté
1964, Barker & Whitham 1980 and Guard & Baldock 2007) have noted that the
problem of bore collapse can effectively be reduced to that of a dam-break on a
slope. Furthermore, Peregrine & Williams (2001) have shown that a specific dam-
break initial-value problem actually produces swash identical to that described by the
analytical solution of Shen & Meyer (1963), hereafter referred to as SM63. Although
the SM63 solution was derived using a generic seaward boundary condition, and
thus, does not necessarily correspond to any physically realistic offshore conditions
(see § 3.1 for more on this), the knowledge of the corresponding initial conditions
and the lack of any other explicit analytical solution motivate its use here. It is
worth noting that Pritchard, Guard & Baldock (2008) have recently provided a more
general implicit analytical solution for bore-driven swash. Within the last 10 years,
cross-shore sediment transport within the swash zone has become a topic of major
interest, primarily because of its role in determining beach morphology and shoreline
position. This interest has generated a number of numerical (e.g. Masselink & Li 2001)
and field studies (e.g. Butt et al. 2004). The net transport of sediment over a single
swash event tends to be a small difference between two large quantities (Osborne &
Rooker 1999), and it is recognized that there are many interrelated factors that
determine the amount of sediment transport within the swash zone (Masselink &
Hughes 1998). The majority of numerical studies utilize a sediment-transport formula
to express sediment flux and this is deemed a function of either one or both shallow-
water hydrodynamic variables (depth and depth-averaged velocity). In a recent paper,
Pritchard & Hogg (2005) (hereafter referred to as PH05) have shown that, due to
the inherent asymmetry of the flow field, all swash models that use power-law-based
sediment-transport formulae in which the hydro- and morphodynamics are decoupled
predict net offshore transport of sediment everywhere on the beach. PH05 noted that
this was at odds with the findings of field studies (see Masselink et al. 2005), which
indicate that, under certain conditions, single swash events can produce a net onshore
movement of sediment. In order to resolve this discrepancy between model predictions
and field data, PH05 developed an uncoupled analytical model that included terms
for pre-suspended sediment and settling lag. The inclusion of these terms led to the
possibility of local net onshore transport of sediment. Interestingly, the critical factor
was found to be the amount of sediment brought into suspension at initial bore
collapse rather than settling lag time.

In this paper, we employ a mathematical model in which the hydro- and
morphodynamics are coupled directly such that the bed and flow interact fully
within the constraints imposed by the inviscid shallow-water dynamics and the simple
total load–sediment transport relation. The model is rudimentary in that it does not
account for infiltration, sediment storage, settling lag, advection of sediment from the
surf zone or bed shear stress; the importance of such effects on beach-face evolution
in the swash zone has been analysed by Brocchini & Baldock (2008).

Throughout §§ 2 and 3 we develop the mathematics and numerical solution method
used to model beach-face evolution over a single swash event. The absence of any
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dissipative terms is advantageous in allowing a comparison of the numerical results
with the analytical solution of SM63 when the bed is rendered immobile (see Appendix
C). An uncoupled analytical model based on the solution of SM63 is also detailed
for comparative purposes.

In § 4 a typical ‘swash event’ based on initial conditions that give rise to the SM63
flow field is simulated for a mobile beach and the results are discussed in detail.

2. Mathematical model
2.1. Governing equations

Water motion in the swash zone is well represented by the shallow-water or long-
wave model in which wavelength is considered to be much greater than water depth
(Peregrine 1972). In dimensional variables the nonlinear shallow-water equations are

∂ĥ

∂t̂
+ û

∂ĥ

∂x̂
+ ĥ

∂û

∂x̂
= 0, (2.1)

∂û

∂t̂
+ û

∂û

∂x̂
+ g

∂(ĥ + B̂)

∂x̂
= 0, (2.2)

where ĥ(x̂, t̂) denotes the total water depth (in metres), û(x̂, t̂) denotes the depth-
averaged water velocity (in metres per second), B̂(x̂, t̂) denotes the beach surface level
(in metres) and g is the acceleration due to gravity (in metres per square seconds).
Morphological evolution of the beach face is described by a sediment continuity (or
Exner) equation of the form

∂B̂

∂t̂
+ ξ

∂q̂

∂x̂
= 0. (2.3)

Here q̂ is the horizontal sediment flux (in square metres per second) and ξ = 1/(1 − p),
with p being beach porosity. To obtain closure of the governing equations (2.1)–(2.3),
it is necessary to specify the sediment flux q̂ = q̂(û, ĥ) or q̂ = q̂(û). In the present study,
a simplified sediment flux is used in which q̂ = q̂(û) only, such that

q̂ = Aû3, (2.4)

where A is a dimensional constant (in square seconds per metre). There remains
a great deal of uncertainty regarding suitable formulae for the parametrization of
swash-zone sediment transport. Although a simple cubic velocity power law for q̂

has been shown to be a good descriptor of sediment transport in the swash by
certain researchers (see, e.g., Butt et al. 2004 and Hsu & Raubenheimer 2006), power-
law-based formulae have been criticized by others (Puleo, Butt & Plant 2005). The
use of such a formula is motivated here primarily by its simplicity and consequent
amenability for analytical treatment. Substituting (2.4) into (2.3) and applying the
chain rule gives

∂B̂

∂t̂
+ 3Aξû2 ∂û

∂x̂
= 0. (2.5)

2.2. Uncoupled and fully coupled models

In the uncoupled approach, the hydrodynamics are divorced from the morphological
evolution such that the beach face is updated (or net sediment flux calculated) only
at the end of each swash event, based on net sediment flux gradient at each point.
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Therefore, the SM63 solution can be used to provide values for the hydrodynamic
variables. Following PH05, (2.5) is then integrated at each point across the beach
between the inundation and denudation times (t̂ i(x̂) and t̂ d(x̂), respectively). This
allows us to compute the net sediment flux, Q̂(x̂), over the entire swash cycle and
then update the beach profile accordingly (see § 3.1). We note that, as the bed is
not updated during the swash event, for a plane sloping beach, the term ∂B̂/∂x̂ =
constant = tan β in (2.2).

For the fully coupled model, the shallow-water and bed-evolution equations are
solved simultaneously by employing the numerical technique described in § 3.2. In
this model, the evolution of the beach face has a direct and immediate impact on the
hydrodynamics.

2.3. Characteristic decomposition of the shallow-water equations

Using standard techniques (e.g. Stoker 1957), a combination of the shallow-water
equations can be found such that derivatives of the two dependent variables can be
combined into derivatives in a single characteristic direction. Thus, (2.1) and (2.2) can
be re-written in characteristic form as

d(û + 2ĉ + tan βgt̂)

dt̂
=

dR+

dt̂
= 0 along

dx̂

dt̂
= û + ĉ, (2.6)

and

d(û − 2ĉ + tan βgt̂)

dt̂
=

dR−

dt̂
= 0 along

dx̂

dt̂
= û − ĉ, (2.7)

where ĉ =(gĥ)1/2. Equations (2.6) and (2.7) are the well-known characteristic equations
for one-dimensional inviscid hydrodynamic flow and state that the quantities û ±
2ĉ + tan βgt̂ (the Riemann invariants) remain constant along the corresponding
characteristic lines whose local gradients are given by dx̂/dt̂ = û ± ĉ. We denote these
characteristics as the C± families of characteristics.

2.4. Characteristic decomposition of the shallow water–Exner system

To derive a system equivalent to (2.6) and (2.7), we seek a combination of the
governing equations such that derivatives of the three dependent variables can be
combined to yield derivatives in a single direction (see Courant & Friedrichs 1976).
The details, which are straightforward, are given in Kelly & Dodd (2009). The
characteristic directions are dx̂/dt̂ = λk , where λk is given by

λ3
k − 2ûλ2

k + [û2 − g(ĥ + 3Aξû2)]λk + 3Aξgû3 = 0, (2.8)

for k = 1, 2, 3. The compatibility or Riemann equations along these characteristics are

dû

dt̂
+

g

(λk − û)

dĥ

dt̂
+

g

λk

dB̂

dt̂
= 0. (2.9)

For physically realistic situations, i.e. with ĥ � 0, it can be shown that the discriminant
of (2.8) is less than zero (Hudson & Sweby 2003). The governing equations are
therefore hyperbolic with real wave speeds (eigenvalues, λk). These can be found
directly from (2.8) using Cardano’s formula (see Abramowitz & Stegun 1965).

Letting A → 0 leads to recovery of the purely hydrodynamic C− and C+ wave
speeds, as described in § 2.3. The bed-deformation speed (λ3), which belongs to the
Cb family of characteristics, then becomes zero.
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Figure 1. Schematic of the swash lens showing notation.

2.5. Flow at and immediately behind the shoreline

For the fixed-bed case, it is well known that, at the shoreline, ĥ → 0, so that both
characteristic directions dx̂/dt̂ → û, such that the equation system degenerates from
hyperbolic to parabolic (Hibberd & Peregrine 1979). It is also known (Peregrine &
Williams 2001) that, at the tip of the swash lens, ∂ĥ/∂x̂ = 0, so that the tip x̂S can be
described by the simple ballistic model:

d2x̂S

dt̂
2

= −g tan β. (2.10)

The quasi-analytical solution of Kelly & Dodd (2009) for the mobile (initially)
flat-bed dam-break governed by (2.1), (2.2) and (2.5) shows that ĥ → 0 here too; they
provide asymptotic forms for λk:

λ3 = û, (2.11)

λ1 = − (û2 + 12Aξgû
2)1/2 − û

2
, (2.12)

and

λ2 = û +
(û2 + 12Aξgû

2)1/2 − û

2
, (2.13)

giving the relationship

λ3 = λ1 + λ2. (2.14)

Thus, it follows that, unlike the fixed-bed case, with q̂ = Aû3, the fully coupled system
remains hyperbolic at the shoreline. Note that the trajectory of the shoreline follows
the path of a Cb characteristic. On the shoreline characteristic, (2.2) becomes

d2x̂S

dt̂
2

= −g
∂ĥ

∂x̂

∣∣∣∣∣
x̂=x̂S

− g
∂b̂

∂x̂

∣∣∣∣∣
x̂=x̂S

− g tan β, (2.15)

where b̂ is the deviation of the bed from its initially plane slope, tan β (see figure 1).
It can be seen that g∂ĥ/∂x̂ and g∂b̂/∂x̂ provide modifications to the force at the tip,
and so, in general, will alter its trajectory.

In the vicinity of the shoreline (limit ĥ → 0), we can expand λ3 as

λ3 = λ(0) + ĥλ(1) + ĥ2λ(2) + O(ĥ3), (2.16)
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where λ(0) = û. Then, collecting terms of up to second order in ĥ, we find that

λ(1) = − 1

3Aξû
, (2.17)

λ(2) =
1 + 3Aξg

27A3gξ 3û
3
, (2.18)

which is valid for all the swash events, except at maximum run-up (û(x̂S) = 0).

3. Solution techniques
3.1. Uncoupled model – SM63 analytical solution

As discussed earlier, the only known explicit exact analytical solution to the shallow-
water equations (2.1) and (2.2) that has a bore as the forcing mechanism was found
by SM63. The SM63 solution was derived using only seaward boundary data from
the domain of dependence of the shoreline singularity, i.e. the region between the bore
path and the limiting characteristic (refer to figure 1 of SM63). As such, the solution
is strictly valid only in the region close to the moving shoreline, although it is a
legitimate explicit solution of (2.1) and (2.2) throughout the swash zone (Peregrine &
Williams 2001). The flow field in a large proportion of the interior of the swash
lens is dependent on specific seaward boundary conditions. This was investigated
further by Guard & Baldock (2007) (see also Baldock et al. 2008 and Pritchard et al.
2008). The SM63 solution implies that when bore-driven swash is modelled using a
fixed-bed approach, then the entire motion of the swash event close to the (moving)
shoreline is determined by conditions at the point of bore collapse. This is true until
the formation of a singularity in the interior of the swash lens; this singularity follows
a path in the physical plane known as a limit line. For the fixed-bed case, the existence
of such a singularity was predicted by Shen & Meyer (1963), and it was later shown
by Hibberd & Peregrine (1979) that the singularity is realized physically through the
formation of a backwash bore. In particular, a single free parameter, the bore velocity
at the initial shoreline position Û b, is responsible for determining the maximum extent
of the run-up in accordance with elementary energy (ballistics) concepts (see (2.10)).
It can then be deduced that the maximum shoreline position x̂Smax is given by

x̂Smax =
Û 2

b

2g tan β
. (3.1)

As noted by Peregrine & Williams (2001), the SM63 solution is an exact solution for
the dam-break initial-value problem in which

ĥ(x̂, 0) = h0

û(x̂, 0) = 0

}
for all x̂ � 0, (3.2)

and

ĥ(x̂, 0) = 0

û(x̂, 0) = 0

}
for all x̂ > 0. (3.3)

It is therefore equivalent to the Ritter (1892) dam-break solution in an accelerated
reference frame (see Watson, Peregrine & Toro 1992 for details). For the dam-break
problem corresponding to a bore-collapse event, the initial particle velocity (at the
instant of collapse) at the leading edge is given by 2(gh0)

1/2, where h0 is the initial
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water depth behind the dam (see, e.g., Stoker 1957). Thus,

x̂Smax =
2h0

tan β
. (3.4)

In dimensional variables the SM63 analytical solution is

ĥ(x̂, t̂) =
(4(gh0)

1/2 t̂ − gt̂2 tan β − 2x̂)2

36gt̂2
, (3.5)

and

û(x̂, t̂) =
2((gh0)

1/2 t̂ − gt̂2 tan β + x̂)

3t̂
. (3.6)

Expressions for the inundation and denudation times (t̂ i and t̂ d , respectively) at a
specific cross-shore location x̂ can be obtained by setting (3.5) equal to zero and
solving the resulting quadratic, yielding

t̂ i =
4(gh0)

1/2 − (16h0g − 8x̂g tan β)1/2

2g tan β
, (3.7)

and

t̂ d =
4(gh0)

1/2 + (16h0g − 8x̂g tan β)1/2

2g tan β
. (3.8)

The instantaneous sediment flux q̂(x̂, t̂) is then

q̂(x̂, t̂) =
8A

27

(
(gh0)

1/2 t̂ − gt̂
2
tan β + x̂

)3

t̂
3

, (3.9)

and, following PH05, the net flux Q̂ (for any x̂) over a swash event is

Q̂(x̂) =

∫ t̂ d (x̂)

t̂ i (x̂)

q̂(û) dt̂ = A

∫ t̂ d (x̂)

t̂ i (x̂)

û3 dt̂ . (3.10)

Thus, the net bed change after the event is

[B̂]t̂ d (x̂)

t̂ i (x̂)
= −ξ

dQ̂

dx̂
= −ξ

(∫ t̂ d (x̂)

t̂ i (x̂)

∂q̂

∂x̂
dt̂ + q̂(x̂, t̂ i)

dt̂ i(x̂)

dx̂
− q̂(x̂, t̂ d)

dt̂ d(x̂)

dx̂

)
. (3.11)

Note that

q̂(x̂, t̂ i)
dt̂ i(x̂)

dx̂
− q̂(x̂, t̂ d)

dt̂ d(x̂)

dx̂
= Aû2(t̂ i) − Aû2(t̂ d) = V̂ (t̂ i) − V̂ (t̂ d), (3.12)

where V̂ is a volume of sediment per unit area, so that V̂ (t̂ i) − V̂ (t̂ d) represents the
change in bed elevation for any x̂ as the shoreline passes. For the SM63 event on a
fixed bed, this term is identically zero, due to the symmetry of the tip over the uprush
and backwash. For an SM63 event on a mobile bed, this will not necessarily be so,
particularly because of the presence of a bed shock at the tip; the numerical solution,
however, shows this term to be small compared to the main flux divergence term.

3.2. Fully coupled model – numerical solution

The full set of equations (2.1), (2.2) and (2.5) describing both the water and the
sediment motion are solved simultaneously using a method of characteristics (MOC)
based numerical scheme. This method is particularly suitable for obtaining high
accuracy in problems where shocks develop, and can therefore be used to investigate
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Figure 2. Schematic diagram showing characteristics of the computational grid.

some fundamental problems of fluid flow and geophysics with a high degree of
confidence. The solution technique employed here belongs to the specified time
interval (STI) class of MOC schemes first outlined for an unsteady mobile-bed flow
by Wu (1973) and discussed in more detail by Lai (1986). The Riemann equations
(2.9) are put into Euler difference form and integrated numerically on a regular
x̂ – t̂ grid with spatial increments of �x̂ and time step �t̂ . Referring to figure 2 the
difference equations used are

(ûs,n+1 − ûi) +
g

(λk,i − ûi)
(ĥs,n+1 − ĥi) +

g

λk,i

(B̂s,n+1 − B̂i) = 0, (3.13)

where i = a, b, c and k = 1, 2, 3. With the initial conditions for each time step labelled
only by their spatial location (i = a, b, c), in the main body of the flow, the solution
procedure is as follows.

(a) Assume that the slope of each of the three characteristic families at (s, n + 1)
is equal to that at (s, n).

(b) Find the locations of a, b and c using extrapolation backwards in time.
(c) First approximations for the dependent variables (ĥ, û and B̂) at (s, n + 1) are

then computed using linearly interpolated values of ĥ, û and B̂ at a, b and c in (3.13).
(d) These new values of ĥ and û are used in the characteristic equations to

recalculate the characteristic slope at (s, n + 1).
The above procedure is repeated until successive values of dependent variables at
(s, n + 1) agree within a specified error limit. We note that the scheme must satisfy
the Courant–Friedrichs–Lewy (CFL) stability criterion so that∣∣∣∣ �t̂

�x̂

∣∣∣∣ �
1

|λmax | , (3.14)

where λmax is the maximum wave speed found. If shocks are initially present in the
flow, or embedded shocks develop at some later time, the scheme utilizes explicit
shock fitting procedures. The shock detection and fitting procedures employed in the
STI MOC scheme are outlined in Appendix B.

Handling of the upstream boundary is simplified by ensuring that the upstream
domain is sufficiently long that the tail of the rarefaction fan moves unhindered until
all the backwash has retreated past the initial shoreline position. Treatment of the
wet–dry (shoreline) boundary is more complex and is detailed in Appendix A.

3.3. Initial time step – Riemann wave solution

For the initial conditions (at t̂ = 0) described by (3.2), the initial characteristic
directions are ill-defined. Therefore, the MOC solution is started at an initially small
time (t̂ I ). Values of the dependent variables at t̂ I are provided by the flat-mobile-bed
Riemann wave solution of Kelly & Dodd (2009). This practice of starting at a finite
time is necessary when MOC schemes are used to solve dam-break problems. On a
non-erodible bed, MOC solvers are typically initialized using the Ritter solution even
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when the dam-break in question occurs on a sloping bed (see, e.g., Sakkas & Strelkoff
1973).

The validity of using initial values derived for the flow over a horizontal bed
for sloping-bed problems does not appear to have been discussed previously, and is
investigated here by letting B̂(x̂, t̂) = x̂ tan β + b̂(x̂, t̂) and by introducing the following
scaling:

x∗ =
(
tI g

1/2h
1/2
0

)−1
x̂, (3.15)

t∗ = t−1
I t̂ , (3.16)

h∗ = h−1
0 ĥ, (3.17)

u∗ = g−1/2h
−1/2
0 û, (3.18)

b∗ = (ξAgh0)
−1b̂, (3.19)

where asterisks denote scaled non-dimensional variables. Substituting these new scaled
variables into the governing equations (2.1), (2.2) and (2.5) gives

∂h∗

∂t∗ + u∗ ∂h∗

∂x∗ + h∗ ∂u∗

∂x∗ = 0, (3.20)

g1/2h
1/2
0

tI

{
∂u∗

∂t∗ + u∗ ∂u∗

∂x∗ +
∂(h∗ + Aξgb∗)

∂x∗

}
+ g tan β = 0, (3.21)

and

ξAgh0

tI

{
∂b∗

∂t∗ +
∂(u∗3)

∂x∗

}
= 0. (3.22)

Therefore, it follows that in the limit tI → 0, i.e. immediately after the bore collapse, the
term g tan β in (3.21) becomes negligible and the equation system approaches that of a
flat bed. This approach requires that û be characterized by a finite velocity and b̂ by a
finite perturbation, with both related to the initial depth of water behind the dam; for
the governing equations used here, both of these requirements are satisfied (Kelly &
Dodd 2009). The same argument can also be put forward for the fixed-bed case.

4. SM63-type swash events
4.1. Non-dimensionalization

Here we present results in dimensionless variables that are more appropriate for the
sloping beach on which the collapse initially takes place. We use the transformations

x =
x̂

h0 tan β
, (4.1)

t = t̂

√
g

h0

, (4.2)

h =
ĥ

h0 tan2 β
, (4.3)

u =
û√

gh0 tan β
, (4.4)

b =
B̂

h0 tan2 β
− x, (4.5)
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Figure 3. Space–time plot of selected characteristics from the three families, C+ (black
dashed), C− (grey solid) and Cb (black solid), for an SM63-type swash event with σ = 0.0654.
The shoreline and path of the sediment bore are illustrated by bold lines.

which yield the system

∂h

∂t
+ u

∂h

∂x
+ h

∂u

∂x
= 0, (4.6)

∂u

∂t
+ u

∂u

∂x
+

∂(h + b)

∂x
+ 1 = 0, (4.7)

∂b

∂t
+ 3σu2 ∂u

∂x
= 0. (4.8)

Here h0 is the initial depth of water at bore collapse and

σ = Aξg (4.9)

is a dimensionless bed-evolution parameter. Analysis of swash-zone data (Kelly 2009)
indicates that, for sand beaches, values of σ are likely to lie in the range

0.01 � σ � 0.2. (4.10)

All calculations are run until the water has retreated back past the initial shoreline
position. Determining a suitable value for A is difficult; here we utilize the field
data of Masselink et al. (2005), collected in the swash zone of a medium sand
(D50 = 0.27–0.29 mm) dissipative beach, to compute an order of magnitude estimate.
Using measured values of q̂ and û in the middle of the run-up and again in the middle
of the backwash for a fixed cross-shore location, an average value of A= 0.004 s2 m−1

was computed. Further, assuming p =0.4 for beach porosity, a value of σ = 0.0654
is obtained from (4.9). Swash events are modelled for σ = 0.0654, and the extrema
σ = 0.01 and σ = 0.2. It should be noted that the results of numerical experiments
show that when the hydro- and morphodynamics are fully coupled, swash events with
differing values of beach porosity and/or sediment mobility (i.e. σ ) are no longer
hydrodynamically identical, as they are for the uncoupled model.

4.2. Flow structure

Figures 3 and 4 show the characteristic grid and contours of h, u and b for σ = 0.0654.
Figure 5 provides dimensional snapshots of the same swash event in order to better
illustrate the salient flow features. At the moment of dam/bore collapse, there is
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Figure 4. Space–time plot showing dimensionless contours of (a) dimensionless water depth
(h), (b) dimensionless water velocity (u) and (c) change in beach profile (b) for SM63-type
swash with σ = 0.0654. Dashed lines in (b) and (c) show the zero contour.

an instantaneous acceleration of water and a sediment bore forms at the shoreline.
The flow is subsequently dominated by gravity and the consequent decrease in water
velocity over time causes the sediment bore to progressively reduce in height as the
swash climbs the beach; note that the sediment bore height is determined directly
from the shock relation associated with the Exner equation in which b � u (refer to
Appendix B for details).

At flow reversal, the height of the sediment bore is momentarily zero (see figure
5c, d ). The sediment bore then again begins to grow in strength as the flow at the
shoreline accelerates seawards. Further back within the main body of the flow, two
gradient discontinuities form in all dependent variables at the instant of dam/bore
collapse; these correspond to those marking the beginning and the end of the
constant-state region for the mobile-bed dam-break over an initially flat bed (see
Kelly & Dodd 2009). The first of these gradient discontinuities forms, and continues
to move, seawards of the initial shoreline location and is therefore outside our
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Figure 5. Snapshots showing (from top to bottom) salient features of the (1) run-up
(t̂ = 1.12 s); (2) flow reversal (t̂ =5.72 s); and (3) backwash (t̂ = 9.42 s) for SM63-type swash
with σ = 0.0654. (g, h) The associated velocity profiles. (a), (c), (e) and (g) are dimensional,
illustrating the physical situation; (b), (d ), (f ) and (h) are non-dimensional.

domain of interest. The second gradient discontinuity forms landwards of the initial
shoreline position and climbs the beach, propagating along a characteristic until the
discontinuity and the flow local to it reverse. Once the flow has reversed a compression,
wave begins to build up on the downstream side of the gradient discontinuity and,
as also occurs in analogous gas dynamical problems (Moretti & DiPiano 1983), this
very soon develops into a shock wave. These flow features are clearly evident in the
snapshots of figure 5; the characteristic grid shown in figure 3 provides further insight
into the flow structure. It can be seen in figure 3 that the gradient discontinuity
initially moves as a characteristic (the limit of a weak shock) and later grows into
a fully developed shock. Here, the shock takes the form of a relatively slow-moving
seaward-facing bed step (i.e. it forms due to the coalescence of Cb characteristics; see
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Figure 6. Dimensionless shoreline position in the physical plane for an SM63 swash event on
a mobile beach with σ = 0.0654 (solid line). For comparison the SM63 (fixed beach) analytical
shoreline motion is also shown for the same initial conditions (dashed line).

figure 5c, d for a profile view of this bed-step formation). Unlike the sediment bore at
the wave tip, this moving bed step appears to be akin to the sediment bores found in
steady alluvial flows (Needham & Hey 1991). The water arriving from the landward
side of the slowly retreating bed step meets it almost as though it were unmoving
and, similar to the flow over a fixed bed step, forms a hydraulic jump over it. With
subscripts H and L denoting the high and low side of the bed shock, respectively,
the strength of the shock, defined as (BH − BL)/hmin, where hmin is the minimum
water depth at the shock, is relatively weak ((BH − BL)/hmin < 1.8 for σ = 0.0654);
the change in slope of the two hydrodynamic characteristics as they cross the shock
path is barely noticeable in figure 3.

Also note that if the wave structure is examined further using figure 3, it can be
seen that the wave speed of the incoming (outgoing) characteristics, λ1 (λ2), remains
positive (negative). Further, the incoming characteristics terminate at the shoreline.
In fact, only the Cb characteristic (λ3) changes sign. This characteristic represents the
deformation of the bed, and, looking closely at figure 3, it can be seen that the bed
is highly mobile over the leading edge of the uprush, and for a significant proportion
(in fact, the majority) of the backwash (see figure 4).

4.3. Maximum run-up and beach-face evolution

Figure 6 shows the position of the shoreline in the physical plane for the swash
event of figure 4, and also shows the equivalent shoreline for the same bore collapse
on a fixed beach. The limiting effect of bed mobility on run-up is fairly severe
with the maximum run-up of the coupled model only around 70 % of the uncoupled
solution. A lower tip velocity at the point of bore collapse (compared to that obtained
from the fixed-bed problem) is partly responsible for this decrease in maximum run-
up; however, the flow dynamics are also more complex than in the fixed-bed case.
Interestingly, over a mobile bed, maximum run-up is greater than that expected from
the ballistics theory prediction based on the morphodynamic initial tip velocity. Other
physical variables at the tip are shown in figure 7.

It can be seen that the bore height decays rapidly as the sediment bore proceeds up
the beach. Of particular interest is the tip velocity (u(xS)), which is approximately a
straight line, indicating that the shoreline motion is still (to leading order) parabolic,
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Figure 7. Shoreline variables during the swash event. (a) Sediment bore height calculated
from the numerical model (solid black line) and from (4.11) (grey circles), with bi given by the
sediment bore height calculated from the Riemann solution of Kelly & Dodd (2009) at initial
time, and ∂b/∂x|x=xS

+ ∂h/∂x|x=xS
= − 0.162. (b) Fluid and shoreline velocities; the grey line

indicates u(xS) for the equivalent fixed-bed bore collapse. (c) ∂b/∂x and ∂h/∂x (dashed line).
(d ) (∂h/∂x) + (∂b/∂x).

despite the fact that ∂h/∂x|x = xS
and ∂b/∂x|x = xS

are non-zero. The reason for this
can be seen in figure 7(d ), in which the effects of bed and water slope produce a
quasi-constant modification to gravity for the uprush (see (2.15)), so that the effect is
to produce an additional onshore force (hence the slightly smaller slope for the u(xS)
line than that for the fixed-bed case; see figure 7b). This is also the reason why the
fixed-bed event for the same initial velocity produces a smaller run-up. The conclusion
is that it is at the first instant of bore collapse from the initial conditions (3.2) and
(3.3) to the Riemann solution of Kelly & Dodd (2009) that the initial tip velocity
and therefore the maximum run-up is determined, as for the solution of SM63 and
Peregrine & Williams (2001). Further note that ∂b/∂x|x = xS

< 0 for t > 8.4, indicating
that a mound of sediment accumulates behind the diminishing sediment bore, which
ultimately results in deposition at the head of the beach at maximum run-up; see
figure 5(c, d ). Note the bed elevation at the tip in the backwash (figure 7a), where
the water initially retreats back over the berm that was deposited during the uprush,
thus stripping sediment as the bore now retreats offshore. The final ‘kink’ in the
profile originates from the shoreward bed gradient discontinuity. The deviation from
a purely parabolic profile is clear in the backwash, as seen in figure 7(b). Figure 7(d )
also shows the time evolution of ∂h/∂x|x = xS

+ ∂b/∂x|x = xS
for the whole swash

event. For small t (t < 1), it is possible that there is some numerical inaccuracy
as ∂h/∂x|x = xS

+ ∂b/∂x|x = xS
initially increases sharply, because as tI → 0, the
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flat-bed solution is recovered (see (3.15)–(3.19)), wherein ∂h/∂x|x = xS
+ ∂b/∂x|x = xS

= 0
(because otherwise the shock tip would accelerate without bound; this also follows
from the theory of generalized simple waves, according to Jeffrey 1976); see also
Kelly & Dodd (2009).

Note that this is apparent here because to a leading order in the early run-up,
∂h/∂x|x = xS

and ∂b/∂x|x = xS
cancel each other out. In the backwash, the origin of the

non-parabolic tip behaviour(see figure 7b) becomes clear.
In figure 8 we show ∂h/∂x and ∂u/∂x at the tip computed from the numerical

MOC values. This figure also shows the values for the SM63 analytical solution and
their numerical equivalents using the present numerical approach. It can be seen that
the numerical values are very close to those obtained from the analytical solution
(3.5) and (3.6); further, ∂h/∂x|x = xS

< 0 for the whole swash event.
Finally, (2.15) can be rewritten using the shock relation (B 3) (or from the Riemann

equation (2.9), and (2.16)–(2.18)) as

1

b
1/2
S

dbS

dt
= −2σ 1/2

(
tan β +

∂h

∂x

∣∣∣∣
x=xS

+
∂b

∂x

∣∣∣∣
x=xS

)
, (4.11)

where bS = b (x = xS). It can be seen that the bed-shock-height decay can therefore be
a result of a constant force at the tip, depending on the rate of decay. Assuming that
∂h/∂x|x = xS

+ ∂b/∂x|x = xS
is indeed constant allows integration of (4.11) such that

bS = bI − 2σ 1/2b
1/2
I tan β ′t + σ tan2 β ′t2, (4.12)

where bI is the initial bore height and tan β ′ = tan β + (∂h/∂x|x = xS
) + ∂b/∂x|x = xS

. If
we take bI from the Riemann solution of Kelly & Dodd (2009) at the initial time,
and ∂h/∂x|x = xS

+ ∂b/∂x|x = xS
= −0.162, this being the limiting value in figure 7(d ),

we can see that the resulting decay in bore height is essentially identical to that from
the numerical solution (figure 7a).

The sediment bore at the tip is an extremely effective transporter of sediment.
When flow reverses at the tip, initially it does not accelerate as quickly as it would
on a fixed beach, as the stoss side of the berm reduces the local beach gradient;
we note that it does not reverse the overall local gradient – a condition that would
lead to a pool of water being left at the upper limit of the swash zone – only the
local ∂b/∂x|x = xS

reverses sign (see figure 7c). Water in the backwash strips sediment
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Figure 9. Dimensionless change in bed level relative to the initially plane beach (denoted by
b) for uncoupled (dashed and shaded) and fully coupled (solid and hashed) transport models
after one swash cycle for σ = 0.01 (a), σ = 0.0654 (b) and σ = 0.2 (c).

from the beach as it retreats over the berm and, as the sediment bore at the tip
gets progressively stronger with increasing offshore velocity at the tip, the amount of
sediment stripped off the beach in the backwash increases as the original shoreline
position is approached.

4.4. Relationship between final beach profile and bed-evolution parameter (σ)

Figure 9 illustrates the bed change for both coupled and uncoupled beach evolution
for σ = 0.01, 0.0654 and 0.2. It is immediately obvious, within the range of σ values
being considered, that coupling leads to a significant reduction in the amount of
sediment stripped from the beach. Moreover, as σ increases, there is a growing
disparity between the coupled and uncoupled predictions of beach-face change and
maximum run-up; this finding emphasizes the importance of coupling when modelling
flow over beaches that exhibit a high degree of sediment mobility. It is worth pointing
out that the use of a lower value of A, and thus σ , in the backwash in the coupled
model, as suggested by a number of researchers (see, for example, Masselink & Li 2001
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and Masselink et al. 2005), would further decrease the net offshore transport. The
limiting effect of bed evolution on run-up is shown in figure 10; the figure clearly
demonstrates that coupling significantly reduces the predicted run-up for the range
of σ values likely to be found on a sand beach (see § 4.1). For the maximum value of
σ the maximum run-up is approximately half of what it would be on a fixed beach.
(From (3.4) and (4.1), the non-dimensional value of xSmax is 200 for the fixed-beach
case.)

5. Concluding remarks
These new numerical MOC solutions of a fully coupled shallow water–Exner

system, based on hydrodynamical initial conditions that give rise to the SM63 flow
field, reveal that full coupling between flow and bed dramatically alters the pattern of
beach-face evolution over a single swash event compared with predictions based on
purely hydrodynamical equations employing the same sediment transport equation:
q̂ = Aû3 (see Pritchard & Hogg 2005).

Our findings support those of Dodd et al. (2008) in that the high-Froude-number
flows of the swash mean that divorcing the hydro- and morphodynamics when
modelling this region of the nearshore is inappropriate. The implications of this for
the understanding and modelling of swash overtopping, run-up and breaching are
profound.

Nonetheless, the details of this modelling should be viewed with some scepticism
from the point of view of predictions of real beach change. This is in part because
much of the onshore transport results from the initial bed shock or sediment wedge,
and this is determined at the point of bore collapse (Kelly & Dodd 2009) and is
discontinuous with regard to the initial conditions, in the same way as is the Ritter
solution (Ritter 1892) and that examined by Pritchard & Hogg (2005). This is a
consequence of the inadequacy of the shallow-water equations in describing the early
stages of a dam-break/bore collapse, and is well known (see, e.g., Peregrine & Williams
2001). Furthermore, on beaches with large grain size, infiltration is known to be very
important, and, in the upper swash, will contribute to accretion. Other effects (settling
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lag, injection of sediment from the surf zone, turbulence at bore collapse and bed
shear stress) are also ignored here. Finally, note that the use of (2.4) is fundamental
to the structure of the subsequent swash event. This formula, as has been noted
previously, implies that an infinitesimally thin film of water (i.e. the tip) can transport
a finite quantity of sediment (in particular, creating the sediment bore at the tip).
Other such formulae that factor in the water depth will yield very different behaviour
at the tip, although the structure elsewhere will be less affected.
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Appendix A. Shoreline boundary conditions
Following Titov & Synolakis (1995), our treatment of the shoreline boundary

uses a time-dependent space step �x̂(t̂) for the last mesh point (shoreline position).
However, the algorithm developed in Titov & Synolakis (1995) requires that the beach
slope is known a priori ; this criterion is not met for the mobile-bed problem when
the sediment-transport formula is q̂ = q̂(û) only. Therefore, we present the following
algorithm for the shoreline boundary.

A.1. Run-up

Assuming that at time t̂ the location of the shoreline boundary x̂ = x̂S(t̂) = x̂ t̂
S is

known, with the subscript S representing the last fixed nodal point on a beach whose
slope (tanβ) is initially constant, the algorithm is summarized as follows:

(a) At time t̂ the velocity at the shoreline boundary dx̂S/dt̂ = ûS is obtained by a
(linear) extrapolation from the previous two (s and s − 1) fixed nodes.

(b) An initial guess for x̂ t̂+�t̂
S is made using the formula x̂ t̂+�t̂

S = x̂ t̂
S + ût̂

S�t̂ .

(c) ût̂+�t̂
S is computed using linear extrapolation.

(d) x̂ t̂+�t̂
S is re-computed using the formula x̂ t̂+�t̂

S = x̂ t̂
S + {((ût̂+�t̂

S + ût̂
S)/2)�t̂}.

(e) Steps (c) and (d) are repeated until values of x̂ t̂+�t̂
S agree to within a specified

error limit.
(f) The water depth at the shoreline boundary ĥS is set equal to zero.
(g) The value of the bed height is set using the beach slope (tan β) and the shock

relation at the shoreline boundary, i.e.

B̂S = Aξû2
S + x̂ t̂+�t̂

S tan β . (A 1)

(h) If, at time t̂ + �t̂ , the shoreline boundary position x̂S exceeds the next fixed
mesh point (s + 1), the value of s is incremented by 1 and this fixed mesh point is
introduced. The dependent variables are determined here by an interpolation from
the values at the previous fixed mesh point (x̂S−1) and those at x̂S .

A.2. Backwash

Treatment of the backwash is almost the same as the run-up, the differences being
that in step (g) the bed level at the tip is computed using the combination of an
extrapolation procedure employing data from the previous two mesh points and the
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shock relation. In step (h) if the shoreline has receded beyond a fixed mesh point,
then that mesh point is no longer used in the computational procedure.

This approach differs significantly from that of Titov & Synolakis (1995) as we
track shoreline position explicitly through time using an extrapolative procedure.
Titov & Synolakis use a horizontal projection of the free surface and specify the
shoreline position as being where this line intercepts the beach (cf. figure 2 of their
paper). Our algorithm has proven to be extremely robust when used with both the
STI MOC scheme presented here and more conventional finite-difference schemes.

Appendix B. Shock fitting
When a shock is present in an otherwise continuous flow, the only mathematically

sound solution of the inviscid shallow water and shallow water–Exner equations
requires a perfect discontinuity. Inevitably, in shock capturing schemes, the width
of a shock is grid-dependent and scaled according to the mesh spacing and the
shock is therefore smeared over at least two mesh points. In this study, all shocks
within the flow are dealt with explicitly and are thus resolved at a single point
using a ‘floating shock fitting’ procedure in which the shock is allowed to wander
freely between mesh points on the computational grid (see, e.g., Moretti 1973). Shock
fitting requires the explicit formulation of the Rankine–Hugoniot (jump) equations,
following Needham & Hey (1991). The Rankine–Hugoniot conditions for the system
comprising (2.1), (2.2) and (2.5) are found from the integral form of these equations
as

[ĥ(û − ŵ)]HL = 0, (B 1)[
−ŵûĥ + ĥû2 +

gĥ2

2

]H

L

+
g

2
(B̂H − B̂L)(ĥL + ĥH ) = 0, (B 2)

[B̂ŵ − Aξû3]HL = 0, (B 3)

where the subscripts H and L represent values at the high and low sides of a shock,
respectively, and ŵ is the (dimensional) shock velocity. As the tip follows the trajectory
of a Cb characteristic, whose celerity is given by λ3 = û (see § 2.5), the sediment bore
moves at the same velocity as the water at the tip, i.e. ŵ = û. From (B 3), it therefore
follows that B̂H = Aξ (ûH )2, that is, the height of the sediment bore at the tip is
proportional to the square of the water velocity there.

B.1. Shock detection

In order to detect embedded shocks, we use a technique developed by Moretti (1971)
for gas dynamical problems. This consists of, at the end of each time step, identifying
the mesh interval (s, s + 1) where the water-depth gradient (or alternatively the
bed-level gradient) is greatest. If this maximum gradient then increases in time for a
prescribed number of consecutive steps (here we use five consecutive steps; however,
the shock is detected only marginally later if more steps are used), a shock is placed
at the mid-point of the mesh interval (s + (1/2)). The initial shock speed is defined as
the average of the corresponding wave speeds at s and s +1 (i.e. ŵ = 0.5(λi |s +λi |s+1)).
Following Moretti (1971), we note that the early detection of shocks, in which the
shock initially moves as a characteristic (the limit of a weak shock), is preferable to
late detection where the shock has already built up some strength.
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Figure 11. Configuration of characteristics in the x̂–t̂ plane corresponding to (a) type 1, (b)
type 2 and (c) type 3 shocks. The shock path is shown by the thick line whereas C+, C− and
Cb characteristics are represented by thin solid, dotted and dashed lines, respectively.

B.2. Shock evolution

In shock fitting schemes, the position of the shock must be tracked through time.
Additionally, for an unsteady flow, values of all dependent variables on the high side
of the shock, as well as the shock velocity, must be computed at each time step. A
morphodynamic shocked flow is more complex than a pure hydrodynamic shocked
flow as three distinct shock types can exist. Sieben (1997, 1999) has classified the three
shock types for the shallow water–Exner system. Each shock type corresponds to a
different characteristic configuration at the shock (see figure 11). The method used
to fit shocks necessarily varies according to the type of shock under consideration.
The following text, used in conjunction with figure 11, outlines the fitting procedures
developed for use with the MOC STI scheme presented in this paper.

B.3. Type 1 or type 3 (hydrodynamic) shock

(a) An initial estimate for the new shock location x̂w at n + 1 is made using the
value of the shock speed at s. This is assumed to be known in the case of a pre-existing
shock or is computed by the method given above for embedded shocks.

(b) Values of all dependent variables (ĥ, û and B̂) more than one mesh point away
on the low and high sides of the shock are computed using the STI MOC technique.

(c) Values of all dependent variables (ĥ, û and B̂) at point L on the low side of
the shock are computed by the STI MOC technique.

(d) Using high-side values from the previous time step, an estimate of the C−

characteristic wave speed (λ1) is arrived at at point H . Using this approximation, a
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linear extrapolation backwards in time is made to find the location of the base of this
characteristic.

(e) The three Rankine–Hugoniot equations are solved simultaneously with the
difference form of the Riemann equation (3.13) valid along the C− characteristic
arriving from the high side. This set of equations presents a system comprising four
nonlinear equations in four unknowns and is solved numerically using a globally
convergent Newton–Raphson technique (see Press et al. 2007).

(f) Values of the independent variables at the mesh point adjacent to the low side
of the shock are computed by a linear interpolation between the low side of the shock
(point L) and the next supercritical node.

(g) Values of the independent variables at the mesh point adjacent to the high side
of the shock are computed by a linear interpolation between the high side of the
shock (point H ) and the next subcritical node.

B.4. Type 2 (morphodynamic) shock

(a) An initial estimate for the new shock location x̂w at n + 1 is made using the
value of the shock speed at s. This is assumed to be known in the case of a pre-existing
shock or is computed by the method given above for embedded shocks.

(b) Estimates of the C+ and Cb wave speeds on the low side (at point L) and the
C− and Cb wave speeds on the high side (at point H ) of the shock are made using
values from the previous time step. The base points of these characteristics are found
using linear extrapolation backwards in time.

(c) The three Rankine–Hugoniot equations are solved simultaneously with the two
Riemann difference equations valid along the C+ and Cb characteristics arriving
from the low side and the two Riemann difference equations valid along the C−
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Figure 13. Comparison of the dimensional instantaneous shoreline position as computed by
the STI MOC solver (solid line) and calculated from the numerical integration of (2.15)
(dashed line) with A = 4 × 10−3 s2 m−1 and p = 0.4.

and Cb characteristics arriving from the high side. This set of equations presents a
system comprising seven nonlinear equations in seven unknowns and is again solved
numerically using a globally convergent Newton–Raphson technique.

(d) Values of the independent variables at the mesh point adjacent to the low side
of the shock are computed by a linear interpolation between the low side of the shock
(point L) and the next supercritical node.

(e) Values of the independent variables at the mesh point adjacent to the high side
of the shock are computed by a linear interpolation between the high side of the
shock (point H ) and the next subcritical node.

Note that the use of extrapolation or interpolation to compute values of dependent
variables adjacent to shock points is standard practice when using the shock fitting
approach. (Indeed, it is the only available option.) Consequently, there have been
many in-depth studies undertaken into the effect of such procedures on the global
accuracy of numerical solutions. We refer the interested reader to Moretti (2002) for
an introduction to modern shock fitting techniques.
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Appendix C. Model verification
In order to verify our numerical model we check its ability to reproduce the

analytical results presented in SM63. As the bed in the SM63 analytical solution is
fixed, it is necessary to set the sediment mobility parameter equal to some small, but
non-zero, value; here we use A= 1×10−10 s2 m−1 and set beach porosity equal to zero.
Figure 12 shows a comparison between the SM63 fixed-bed analytical solution and
numerical ‘fixed-bed’ results for water depth and shoreline position. Results presented
at the indicated times are dimensional; in this appendix carets have been dropped for
convenience, and variables correspond to both the run-up and backwash. It is clear
from the figure that the STI MOC scheme performs extremely well, with results being
almost indistinguishable at this scale; in fact, for the time window shown, the relative
error between numerical and analytical results is less than 0.5 %. A valuable check can
be made on the accuracy of the numerical solution by comparing the instantaneous
shoreline position predicted by the STI MOC scheme with that predicted by the
numerical integration of (2.15). To integrate (2.15), a variable-time-step fourth-order
Runge–Kutta scheme is used with the terms ∂h/∂x and ∂b/∂x approximated by simple
backward differencing. The results of such an integration for a typical combination
of A and p are shown in figure 13; clearly the agreement is excellent.
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